Show simple item record

dc.contributor.authorLoke, Gabriel
dc.contributor.authorKhudiyev, Tural
dc.contributor.authorWang, Brian
dc.contributor.authorFu, Stephanie
dc.contributor.authorPayra, Syamantak
dc.contributor.authorShaoul, Yorai
dc.contributor.authorFung, Johnny
dc.contributor.authorChatziveroglou, Ioannis
dc.contributor.authorChou, Pin-Wen
dc.contributor.authorChinn, Itamar
dc.contributor.authorYan, Wei
dc.contributor.authorGitelson-Kahn, Anna
dc.contributor.authorJoannopoulos, John
dc.contributor.authorFink, Yoel
dc.date.accessioned2022-04-27T16:11:41Z
dc.date.available2022-04-27T16:11:41Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142136
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Digital devices are the essential building blocks of any modern electronic system. Fibres containing digital devices could enable fabrics with digital system capabilities for applications in physiological monitoring, human-computer interfaces, and on-body machine-learning. Here, a scalable preform-to-fibre approach is used to produce tens of metres of flexible fibre containing hundreds of interspersed, digital temperature sensors and memory devices with a memory density of ~7.6 × 10<jats:sup>5</jats:sup> bits per metre. The entire ensemble of devices are individually addressable and independently operated through a single connection at the fibre edge, overcoming the perennial single-fibre single-device limitation and increasing system reliability. The digital fibre, when incorporated within a shirt, collects and stores body temperature data over multiple days, and enables real-time inference of wearer activity with an accuracy of 96% through a trained neural network with 1650 neuronal connections stored within the fibre. The ability to realise digital devices within a fibre strand which can not only measure and store physiological parameters, but also harbour the neural networks required to infer sensory data, presents intriguing opportunities for worn fabrics that sense, memorise, learn, and infer situational context.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-23628-5en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDigital electronics in fibres enable fabric-based machine-learning inferenceen_US
dc.typeArticleen_US
dc.identifier.citationLoke, Gabriel, Khudiyev, Tural, Wang, Brian, Fu, Stephanie, Payra, Syamantak et al. 2021. "Digital electronics in fibres enable fabric-based machine-learning inference." Nature Communications, 12 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-27T16:01:16Z
dspace.orderedauthorsLoke, G; Khudiyev, T; Wang, B; Fu, S; Payra, S; Shaoul, Y; Fung, J; Chatziveroglou, I; Chou, P-W; Chinn, I; Yan, W; Gitelson-Kahn, A; Joannopoulos, J; Fink, Yen_US
dspace.date.submission2022-04-27T16:01:20Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record