Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/142231.2

Show simple item record

dc.contributor.authorLiu, Ziming
dc.contributor.authorTegmark, Max
dc.date.accessioned2022-05-02T16:35:18Z
dc.date.available2022-05-02T16:35:18Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142231
dc.description.abstractWe present AI Poincar\'e, a machine learning algorithm for auto-discovering conserved quantities using trajectory data from unknown dynamical systems. We test it on five Hamiltonian systems, including the gravitational 3-body problem, and find that it discovers not only all exactly conserved quantities, but also periodic orbits, phase transitions and breakdown timescales for approximate conservation laws.en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionof10.1103/PHYSREVLETT.126.180604en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAPSen_US
dc.titleMachine Learning Conservation Laws from Trajectoriesen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Ziming and Tegmark, Max. 2021. "Machine Learning Conservation Laws from Trajectories." Physical Review Letters, 126 (18).
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-02T16:31:22Z
dspace.orderedauthorsLiu, Z; Tegmark, Men_US
dspace.date.submission2022-05-02T16:31:25Z
mit.journal.volume126en_US
mit.journal.issue18en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version