Show simple item record

dc.contributor.authorArratia, Miguel
dc.contributor.authorButter, Anja
dc.contributor.authorCampanelli, Mario
dc.contributor.authorCroft, Vincent
dc.contributor.authorGillberg, Dag
dc.contributor.authorGhosh, Aishik
dc.contributor.authorLohwasser, Kristin
dc.contributor.authorMalaescu, Bogdan
dc.contributor.authorMikuni, Vinicius
dc.contributor.authorNachman, Benjamin
dc.contributor.authorRojo, Juan
dc.contributor.authorThaler, Jesse
dc.contributor.authorWinterhalder, Ramon
dc.date.accessioned2022-05-02T19:02:08Z
dc.date.available2022-05-02T19:02:08Z
dc.date.issued2022-01-01
dc.identifier.urihttps://hdl.handle.net/1721.1/142237
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>Machine learning tools have empowered a qualitatively new way to perform differential cross section measurements whereby the data are unbinned, possibly in many dimensions. Unbinned measurements can enable, improve, or at least simplify comparisons between experiments and with theoretical predictions. Furthermore, many-dimensional measurements can be used to define observables after the measurement instead of before. There is currently no community standard for publishing unbinned data. While there are also essentially no measurements of this type public, unbinned measurements are expected in the near future given recent methodological advances. The purpose of this paper is to propose a scheme for presenting and using unbinned results, which can hopefully form the basis for a community standard to allow for integration into analysis workflows. This is foreseen to be the start of an evolving community dialogue, in order to accommodate future developments in this field that is rapidly evolving.</jats:p>en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/1748-0221/17/01/p01024en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePublishing unbinned differential cross section resultsen_US
dc.typeArticleen_US
dc.identifier.citationArratia, Miguel, Butter, Anja, Campanelli, Mario, Croft, Vincent, Gillberg, Dag et al. 2022. "Publishing unbinned differential cross section results." Journal of Instrumentation, 17 (01).
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.relation.journalJournal of Instrumentationen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-05-02T18:59:16Z
dspace.orderedauthorsArratia, M; Butter, A; Campanelli, M; Croft, V; Gillberg, D; Ghosh, A; Lohwasser, K; Malaescu, B; Mikuni, V; Nachman, B; Rojo, J; Thaler, J; Winterhalder, Ren_US
dspace.date.submission2022-05-02T18:59:17Z
mit.journal.volume17en_US
mit.journal.issue01en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record