Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/142475.2

Show simple item record

dc.contributor.authorHescham, Sarah-Anna
dc.contributor.authorChiang, Po-Han
dc.contributor.authorGregurec, Danijela
dc.contributor.authorMoon, Junsang
dc.contributor.authorChristiansen, Michael G
dc.contributor.authorJahanshahi, Ali
dc.contributor.authorLiu, Huajie
dc.contributor.authorRosenfeld, Dekel
dc.contributor.authorPralle, Arnd
dc.contributor.authorAnikeeva, Polina
dc.contributor.authorTemel, Yasin
dc.date.accessioned2022-05-11T16:13:39Z
dc.date.available2022-05-11T16:13:39Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142475
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Deep brain stimulation (DBS) has long been used to alleviate symptoms in patients suffering from psychiatric and neurological disorders through stereotactically implanted electrodes that deliver current to subcortical structures via wired pacemakers. The application of DBS to modulate neural circuits is, however, hampered by its mechanical invasiveness and the use of chronically implanted leads, which poses a risk for hardware failure, hemorrhage, and infection. Here, we demonstrate that a wireless magnetothermal approach to DBS (mDBS) can provide similar therapeutic benefits in two mouse models of Parkinson’s disease, the bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in the unilateral 6-hydroxydopamine (6-OHDA) model. We show magnetothermal neuromodulation in untethered moving mice through the activation of the heat-sensitive capsaicin receptor (transient receptor potential cation channel subfamily V member 1, TRPV1) by synthetic magnetic nanoparticles. When exposed to an alternating magnetic field, the nanoparticles dissipate heat, which triggers reversible firing of TRPV1-expressing neurons. We found that mDBS in the subthalamic nucleus (STN) enables remote modulation of motor behavior in healthy mice. Moreover, mDBS of the STN reversed the motor deficits in a mild and severe parkinsonian model. Consequently, this approach is able to activate deep-brain circuits without the need for permanently implanted hardware and connectors.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-25837-4en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceNatureen_US
dc.titleMagnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in miceen_US
dc.typeArticleen_US
dc.identifier.citationHescham, Sarah-Anna, Chiang, Po-Han, Gregurec, Danijela, Moon, Junsang, Christiansen, Michael G et al. 2021. "Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice." Nature Communications, 12 (1).
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-11T16:11:17Z
dspace.orderedauthorsHescham, S-A; Chiang, P-H; Gregurec, D; Moon, J; Christiansen, MG; Jahanshahi, A; Liu, H; Rosenfeld, D; Pralle, A; Anikeeva, P; Temel, Yen_US
dspace.date.submission2022-05-11T16:11:19Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version