Show simple item record

dc.contributor.authorPark, Richard J-Y
dc.contributor.authorEschler, Christopher M
dc.contributor.authorFincher, Cole D
dc.contributor.authorBadel, Andres F
dc.contributor.authorGuan, Pinwen
dc.contributor.authorPharr, Matt
dc.contributor.authorSheldon, Brian W
dc.contributor.authorCarter, W Craig
dc.contributor.authorViswanathan, Venkatasubramanian
dc.contributor.authorChiang, Yet-Ming
dc.date.accessioned2022-05-11T17:29:04Z
dc.date.available2022-05-11T17:29:04Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142488
dc.description.abstractThe need for higher energy-density rechargeable batteries has generated interest in alkali metal electrodes paired with solid electrolytes. However, metal penetration and electrolyte fracture at low current densities have emerged as fundamental barriers. Here we show that for pure metals in the Li–Na–K system, the critical current densities scale inversely to mechanical deformation resistance. Furthermore, we demonstrate two electrode architectures in which the presence of a liquid phase enables high current densities while it preserves the shape retention and packaging advantages of solid electrodes. First, biphasic Na–K alloys show K critical current densities (with the K-β″-Al O electrolyte) that exceed 15 mA cm . Second, introducing a wetting interfacial film of Na–K liquid between Li metal and Li La Zr Ta O solid electrolyte doubles the critical current density and permits cycling at areal capacities that exceed 3.5 mAh cm . These design approaches hold promise for overcoming electrochemomechanical stability issues that have heretofore limited the performance of solid-state metal batteries. + ‒2 ‒2 2 3 6.75 3 1.75 0.25 12en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41560-021-00786-Wen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceDOE repositoryen_US
dc.titleSemi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteriesen_US
dc.typeArticleen_US
dc.identifier.citationPark, Richard J-Y, Eschler, Christopher M, Fincher, Cole D, Badel, Andres F, Guan, Pinwen et al. 2021. "Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries." Nature Energy, 6 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalNature Energyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-11T17:25:55Z
dspace.orderedauthorsPark, RJ-Y; Eschler, CM; Fincher, CD; Badel, AF; Guan, P; Pharr, M; Sheldon, BW; Carter, WC; Viswanathan, V; Chiang, Y-Men_US
dspace.date.submission2022-05-11T17:25:57Z
mit.journal.volume6en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record