Show simple item record

dc.contributor.authorSchwalbe-Koda, Daniel
dc.contributor.authorGómez-Bombarelli, Rafael
dc.date.accessioned2022-07-13T20:14:10Z
dc.date.available2022-05-12T19:21:30Z
dc.date.available2022-07-13T20:14:10Z
dc.date.issued2020-06
dc.identifier.isbn9783030402440
dc.identifier.isbn9783030402457
dc.identifier.issn0075-8450
dc.identifier.issn1616-6361
dc.identifier.urihttps://hdl.handle.net/1721.1/142509.2
dc.description.abstract© 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG. Materials discovery is decisive for tackling urgent challenges related to energy, the environment, health care, and many others. In chemistry, conventional methodologies for innovation usually rely on expensive and incremental strategies to optimize properties from molecular structures. On the other hand, inverse approaches map properties to structures, thus expediting the design of novel useful compounds. In this chapter, we examine the way in which current deep generative models are addressing the inverse chemical discovery paradigm. We begin by revisiting early inverse design algorithms. Then, we introduce generative models for molecular systems and categorize them according to their architecture and molecular representation. Using this classification, we review the evolution and performance of important molecular generation schemes reported in the literature. Finally, we conclude highlighting the prospects and challenges of generative models as cutting edge tools in materials discovery.en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-40245-7_21en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleGenerative Models for Automatic Chemical Designen_US
dc.typeBooken_US
dc.identifier.citationSchwalbe-Koda, D and Gómez-Bombarelli, R. 2020. "Generative Models for Automatic Chemical Design." 968.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalMachine Learning Meets Quantum Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/BookItemen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-12T19:15:19Z
dspace.orderedauthorsSchwalbe-Koda, D; Gómez-Bombarelli, Ren_US
dspace.date.submission2022-05-12T19:15:21Z
mit.journal.volume968en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version