Show simple item record

dc.contributor.authorAng, Shi Jun
dc.contributor.authorWang, Wujie
dc.contributor.authorSchwalbe-Koda, Daniel
dc.contributor.authorAxelrod, Simon
dc.contributor.authorGómez-Bombarelli, Rafael
dc.date.accessioned2022-05-12T19:25:22Z
dc.date.available2022-05-12T19:25:22Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142510
dc.description.abstract© 2020 Elsevier Inc. Through autonomous data acquisition and machine learning, we demonstrate that our neural-network-based reactive force fields allow us to study the dynamical effects of several pericyclic reactions and to predict solvent effects on periselectivity. Our method is over 2,000 times faster than the traditional density functional theory approach, and its accuracy matches the parent quantum mechanical method. Given the efficiency of our machine learning framework, we envisage its applicability in studying larger reactive systems with a higher complexity.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.CHEMPR.2020.12.009en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceChemRxiven_US
dc.titleActive learning accelerates ab initio molecular dynamics on reactive energy surfacesen_US
dc.typeArticleen_US
dc.identifier.citationAng, Shi Jun, Wang, Wujie, Schwalbe-Koda, Daniel, Axelrod, Simon and Gómez-Bombarelli, Rafael. 2021. "Active learning accelerates ab initio molecular dynamics on reactive energy surfaces." Chem, 7 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalChemen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-05-12T19:21:05Z
dspace.orderedauthorsAng, SJ; Wang, W; Schwalbe-Koda, D; Axelrod, S; Gómez-Bombarelli, Ren_US
dspace.date.submission2022-05-12T19:21:18Z
mit.journal.volume7en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record