MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Molecular Tools to Understand Microbial Carbonates

Author(s)
Cutts, Elise M.; Baldes, Matthew J.; Skoog, Emilie J.; Hall, James; Gong, Jian; Moore, Kelsey R.; Bosak, Tanja; ... Show more Show less
Thumbnail
Downloadgeosciences-12-00185.pdf (2.409Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
Here we review the application of molecular biological approaches to mineral precipitation in modern marine microbialites. The review focuses on the nearly two decades of nucleotide sequencing studies of the microbialites of Shark Bay, Australia; and The Bahamas. Molecular methods have successfully characterized the overall community composition of mats, pinpointed microbes involved in key metabolisms, and revealed patterns in the distributions of microbial groups and functional genes. Molecular tools have become widely accessible, and we can now aim to establish firmer links between microbes and mineralization. Two promising future directions include “zooming in” to assess the roles of specific organisms, microbial groups, and surfaces in carbonate biomineralization and “zooming out” to consider broader spans of space and time. A middle ground between the two can include model systems that contain representatives of important microbial groups, processes, and metabolisms in mats and simplify hypothesis testing. These directions will benefit from expanding reference datasets of marine microbes and enzymes and enrichments of representative microbes from mats. Such applications of molecular tools should improve our ability to interpret ancient and modern microbialites and increase the utility of these rocks as long-term recorders of microbial processes and environmental chemistry.
Date issued
2022-04-25
URI
https://hdl.handle.net/1721.1/142513
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Geosciences 12 (5): 185 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.