MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus—A Participatory Approach for Pune and the Bhima Basin, India

Author(s)
Karutz, Raphael; Omann, Ines; Gorelick, Steven M.; Klassert, Christian J. A.; Zozmann, Heinrich; Zhu, Yuanzao; Kabisch, Sigrun; Kindler, Annegret; Figueroa, Anjuli Jain; Wang, Ankun; Küblböck, Karin; Grohs, Hannes; Burek, Peter; Smilovic, Mikhail; Klauer, Bernd; ... Show more Show less
Thumbnail
Downloadsustainability-14-05323.pdf (3.039Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
Systems models of the Food–Water–Energy (FWE) nexus face a conceptual difficulty: the systematic integration of local stakeholder perspectives into a coherent framework for analysis. We present a novel procedure to co-produce and systematize the real-life complexity of stakeholder knowledge and forge it into a clear-cut set of challenges. These are clustered into the Pressure–State–Response (PSIR) framework, which ultimately guides the development of a conceptual systems model closely attuned to the needs of local stakeholders. We apply this approach to the case of the emerging megacity Pune and the Bhima basin in India. Through stakeholder workshops, involving 75 resource users and experts, we identified 22 individual challenges. They include exogenous pressures, such as climate change and urbanization, and endogenous pressures, such as agricultural groundwater over-abstraction and land use change. These pressures alter the Bhima basin’s system state, characterized by inefficient water and energy supply systems and regional scarcity. The consequent impacts on society encompass the inadequate provision with food, water, and energy and livelihood challenges for farmers in the basin. An evaluation of policy responses within the conceptual systems model shows the complex cause–effect interactions between nexus subsystems. One single response action, such as the promotion of solar farming, can affect multiple challenges. The resulting concise picture of the regional FWE system serves resource users, policymakers, and researchers to evaluate long-term policies within the context of the urban FWE system. While the presented results are specific to the case study, the approach can be transferred to any other FWE nexus system.
Date issued
2022-04-28
URI
https://hdl.handle.net/1721.1/142517
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Sustainability 14 (9): 5323 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.