Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/142558.2

Show simple item record

dc.contributor.authorZolotovsky, Katia
dc.contributor.authorVarshney, Swati
dc.contributor.authorReichert, Steffen
dc.contributor.authorArndt, Eric M
dc.contributor.authorDao, Ming
dc.contributor.authorBoyce, Mary C
dc.contributor.authorOrtiz, Christine
dc.date.accessioned2022-05-16T18:36:10Z
dc.date.available2022-05-16T18:36:10Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142558
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Biological structures integrate morphometry (shape-based rules) with materials design to maximize organism survival. The exoskeleton of the armored fish,<jats:italic>Polypterus senegalus</jats:italic>, balances flexibility with protection from predatory and territorial threats. Material properties of the exoskeleton are known; however, the geometric design rules underlying its anisotropic flexibility are uncharacterized. Here, we show how scale shape, articulation, and composite architecture produce anisotropic mechanics using bio-inspired, multi-material 3D-printed prototypes. Passive loading (draping) shows that compliant connections between the scales contribute to mechanical anisotropy. Simulated and experimental active loading (bending) show orientation-dependent stiffness ranging over orders of magnitude, including ‘mechanical invisibility’ of the scales where they do not add stiffness to the exoskeleton. The results illustrate how morphometry provides a powerful tool to tune flexibility in composite architectures independent of varying constituent materials composition. We anticipate that introducing morphometric design strategies will enable flexible, protective systems tuned to complex shapes and functions.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S43246-021-00140-3en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceNatureen_US
dc.titleFish-inspired flexible protective material systems with anisotropic bending stiffnessen_US
dc.typeArticleen_US
dc.identifier.citationZolotovsky, Katia, Varshney, Swati, Reichert, Steffen, Arndt, Eric M, Dao, Ming et al. 2021. "Fish-inspired flexible protective material systems with anisotropic bending stiffness." Communications Materials, 2 (1).
dc.relation.journalCommunications Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-16T18:22:34Z
dspace.orderedauthorsZolotovsky, K; Varshney, S; Reichert, S; Arndt, EM; Dao, M; Boyce, MC; Ortiz, Cen_US
dspace.date.submission2022-05-16T18:22:38Z
mit.journal.volume2en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version