Design for quality: reconfigurable flat optics based on active metasurfaces
Author(s)
Shalaginov, Mikhail Y; Campbell, Sawyer D; An, Sensong; Zhang, Yifei; Ríos, Carlos; Whiting, Eric B; Wu, Yuhao; Kang, Lei; Zheng, Bowen; Fowler, Clayton; Zhang, Hualiang; Werner, Douglas H; Hu, Juejun; Gu, Tian; ... Show more Show less
DownloadPublished version (5.051Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
© 2020 Mikhail Y. Shalaginov et al., published by De Gruyter. Optical metasurfaces, planar subwavelength nanoantenna arrays with the singular ability to sculpt wavefront in almost arbitrary manners, are poised to become a powerful tool enabling compact and high-performance optics with novel functionalities. A particularly intriguing research direction within this field is active metasurfaces, whose optical response can be dynamically tuned postfabrication, thus allowing a plurality of applications unattainable with traditional bulk optics. Designing reconfigurable optics based on active metasurfaces is, however, presented with a unique challenge, since the optical quality of the devices must be optimized at multiple optical states. In this article, we provide a critical review on the active meta-optics design principles and algorithms that are applied across structural hierarchies ranging from single meta-atoms to full meta-optical devices. The discussed approaches are illustrated by specific examples of reconfigurable metasurfaces based on optical phase-change materials.
Date issued
2020Department
MIT Materials Research Laboratory; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Nanophotonics
Publisher
Walter de Gruyter GmbH
Citation
Shalaginov, Mikhail Y, Campbell, Sawyer D, An, Sensong, Zhang, Yifei, Ríos, Carlos et al. 2020. "Design for quality: reconfigurable flat optics based on active metasurfaces." Nanophotonics, 9 (11).
Version: Final published version