Show simple item record

dc.contributor.authorRezayei, Elham
dc.contributor.authorBeheshtian, Javad
dc.contributor.authorShayeganfar, Farzaneh
dc.contributor.authorRamazani, Ali
dc.date.accessioned2022-05-23T14:48:47Z
dc.date.available2022-05-23T14:14:22Z
dc.date.available2022-05-23T14:48:47Z
dc.date.issued2022-05
dc.date.submitted2021-12
dc.identifier.issn1610-2940
dc.identifier.issn0948-5023
dc.identifier.urihttps://hdl.handle.net/1721.1/142640.2
dc.description.abstractAbstract Selectivity of dopamine (DA), uric acid (UA), and ascorbic acid (AA) is an open challenge of electrochemical sensors in the field of biosensing. In this study, two selective mechanisms for detecting DA, UA, and AA biomolecules on the pristine boron nitride nanosheets (BNNS) and functionalized BNNS with tryptophan (Trp), i.e., Trp@BNNS have been illustrated through density functional density (DFT) calculation and charge population analysis. Our findings reveal that the adsorbed biomolecules on Trp@BNNS indicate the less sensitivity factor of biomolecule separation than the functionalized biomolecules with Trp (Trp@biomolecule) adsorbed on pristine BNNS. From the calculations, strong adsorption of Trp@biomolecule on the pristine substrate corresponds to enhancing of electron charge transfer and electrical dipole moment. Our analysis is in good agreement with the previous theoretical and experimental results and suggests new pathway for electrode modification for electrochemical biosensing.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00894-022-05158-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleFundamental mechanisms of hexagonal boron nitride sensing of dopamine, tryptophan, ascorbic acid, and uric acid by first-principles studyen_US
dc.typeArticleen_US
dc.identifier.citationJournal of Molecular Modeling. 2022 May 20;28(6):158en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalJournal of Molecular Modelingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-21T03:28:36Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-05-21T03:28:36Z
mit.journal.volume28en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version