MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analytic Langlands correspondence for $$PGL_2$$ P G L 2 on $${\mathbb {P}}^1$$ P 1 with parabolic structures over local fields

Author(s)
Etingof, Pavel; Frenkel, Edward; Kazhdan, David
Thumbnail
Download39_2022_Article_603.pdf (1.256Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
Abstract We continue to develop the analytic Langlands program for curves over local fields initiated in our earlier papers, following a suggestion of Langlands and a work of Teschner. Namely, we study the Hecke operators which we introduced in those papers in the case of a projective line with parabolic structures at finitely many points for the group $$PGL_2$$ P G L 2 . We establish most of our conjectures in this case.
Date issued
2022-05-18
URI
https://hdl.handle.net/1721.1/142641
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing
Citation
Etingof, Pavel, Frenkel, Edward and Kazhdan, David. 2022. "Analytic Langlands correspondence for $$PGL_2$$ P G L 2 on $${\mathbb {P}}^1$$ P 1 with parabolic structures over local fields."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.