Show simple item record

dc.contributor.authorTanigawa, Yosuke
dc.contributor.authorQian, Junyang
dc.contributor.authorVenkataraman, Guhan
dc.contributor.authorJustesen, Johanne Marie
dc.contributor.authorLi, Ruilin
dc.contributor.authorTibshirani, Robert
dc.contributor.authorHastie, Trevor
dc.contributor.authorRivas, Manuel A.
dc.date.accessioned2022-05-23T15:38:08Z
dc.date.available2022-05-23T15:38:08Z
dc.date.issued2021-09-06
dc.identifier.urihttps://hdl.handle.net/1721.1/142649
dc.description.abstractWe present a systematic assessment of polygenic risk score (PRS) prediction across more than 1,500 traits using genetic and phenotype data in the UK Biobank. We report 813 sparse PRS models with significant (p < 2.5 x 10−5) incremental predictive performance when compared against the covariate-only model that considers age, sex, types of genotyping arrays, and the principal component loadings of genotypes. We report a significant correlation between the number of genetic variants selected in the sparse PRS model and the incremental predictive performance (Spearman’s ⍴ = 0.61, p = 2.2 x 10−59 for quantitative traits, ⍴ = 0.21, p = 9.6 x 10−4 for binary traits). The sparse PRS model trained on European individuals showed limited transferability when evaluated on non-European individuals in the UK Biobank. We provide the PRS model weights on the Global Biobank Engine (https://biobankengine.stanford.edu/prs).en_US
dc.publisherCold Spring Harbor Laboratoryen_US
dc.relation.isversionof10.1101/2021.09.02.21262942en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourcePLoSen_US
dc.titleSignificant Sparse Polygenic Risk Scores across 813 traits in UK Biobanken_US
dc.typeArticleen_US
dc.identifier.citationTanigawa, Yosuke, Qian, Junyang, Venkataraman, Guhan, Justesen, Johanne Marie, Li, Ruilin et al. 2021. "Significant Sparse Polygenic Risk Scores across 813 traits in UK Biobank."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2022-05-23T15:28:17Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record