dc.contributor.author | Bau, D Anthony | |
dc.contributor.author | Andreas, Jacob | |
dc.date.accessioned | 2022-06-02T18:44:03Z | |
dc.date.available | 2022-06-02T18:44:03Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/142869 | |
dc.language.iso | en | |
dc.publisher | Association for Computational Linguistics (ACL) | en_US |
dc.relation.isversionof | 10.18653/V1/2021.EMNLP-MAIN.448 | en_US |
dc.rights | Creative Commons Attribution 4.0 International License | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.source | Association for Computational Linguistics | en_US |
dc.title | How Do Neural Sequence Models Generalize? Local and Global Cues for Out-of-Distribution Prediction | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bau, D Anthony and Andreas, Jacob. 2021. "How Do Neural Sequence Models Generalize? Local and Global Cues for Out-of-Distribution Prediction." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. | |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | |
dc.relation.journal | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2022-06-02T18:40:09Z | |
dspace.orderedauthors | Bau, DA; Andreas, J | en_US |
dspace.date.submission | 2022-06-02T18:40:11Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |