Show simple item record

dc.contributor.authorAtkinson, Eric
dc.contributor.authorBaudart, Guillaume
dc.contributor.authorMandel, Louis
dc.contributor.authorYuan, Charles
dc.contributor.authorCarbin, Michael
dc.date.accessioned2022-06-07T13:39:26Z
dc.date.available2022-06-07T13:39:26Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142898
dc.description.abstract<jats:p> <jats:italic>Probabilistic programming languages</jats:italic> aid developers performing Bayesian inference. These languages provide programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to unbounded streams of data. This work demonstrated that the <jats:italic>delayed sampling</jats:italic> inference algorithm could be extended to work in a streaming context. ProbZelus showed that while delayed sampling could be effectively deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is not guaranteed to use a bounded amount of memory over the course of the execution of the program. </jats:p> <jats:p> In this paper, we the present conditions on a probabilistic program’s execution under which delayed sampling will execute in bounded memory. The two conditions are dataflow properties of the core operations of delayed sampling: the <jats:italic>m</jats:italic> <jats:italic>-consumed property</jats:italic> and the <jats:italic>unseparated paths property</jats:italic> . A program executes in bounded memory under delayed sampling if, and only if, it satisfies the <jats:italic>m</jats:italic> -consumed and unseparated paths properties. We propose a static analysis that abstracts over these properties to soundly ensure that any program that passes the analysis satisfies these properties, and thus executes in bounded memory under delayed sampling. </jats:p>en_US
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionof10.1145/3485492en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceACMen_US
dc.titleStatically bounded-memory delayed sampling for probabilistic streamsen_US
dc.typeArticleen_US
dc.identifier.citationAtkinson, Eric, Baudart, Guillaume, Mandel, Louis, Yuan, Charles and Carbin, Michael. 2021. "Statically bounded-memory delayed sampling for probabilistic streams." Proceedings of the ACM on Programming Languages, 5 (OOPSLA).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMIT-IBM Watson AI Lab
dc.relation.journalProceedings of the ACM on Programming Languagesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-06-07T13:31:01Z
dspace.orderedauthorsAtkinson, E; Baudart, G; Mandel, L; Yuan, C; Carbin, Men_US
dspace.date.submission2022-06-07T13:31:03Z
mit.journal.volume5en_US
mit.journal.issueOOPSLAen_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record