Show simple item record

dc.contributor.authorGadre, Chaitanya A.
dc.contributor.authorYan, Xingxu
dc.contributor.authorSong, Qichen
dc.contributor.authorLi, Jie
dc.contributor.authorGu, Lei
dc.contributor.authorHuyan, Huaixun
dc.contributor.authorAoki, Toshihiro
dc.contributor.authorLee, Sheng-Wei
dc.contributor.authorChen, Gang
dc.contributor.authorWu, Ruqian
dc.contributor.authorPan, Xiaoqing
dc.date.accessioned2022-06-10T14:12:56Z
dc.date.available2022-06-10T14:12:56Z
dc.date.issued2022-06-08
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttps://hdl.handle.net/1721.1/142927
dc.description.abstractSpatially resolved vibrational mapping of nanostructures is indispensable to the development and understanding of thermal nanodevices1, modulation of thermal transport2 and novel nanostructured thermoelectric materials3,4,5. Through the engineering of complex structures, such as alloys, nanostructures and superlattice interfaces, one can significantly alter the propagation of phonons and suppress material thermal conductivity while maintaining electrical conductivity2. There have been no correlative experiments that spatially track the modulation of phonon properties in and around nanostructures due to spatial resolution limitations of conventional optical phonon detection techniques. Here we demonstrate two-dimensional spatial mapping of phonons in a single silicon–germanium (SiGe) quantum dot (QD) using monochromated electron energy loss spectroscopy in the transmission electron microscope. Tracking the variation of the Si optical mode in and around the QD, we observe the nanoscale modification of the composition-induced red shift. We observe non-equilibrium phonons that only exist near the interface and, furthermore, develop a novel technique to differentially map phonon momenta, providing direct evidence that the interplay between diffuse and specular reflection largely depends on the detailed atomistic structure: a major advancement in the field. Our work unveils the non-equilibrium phonon dynamics at nanoscale interfaces and can be used to study actual nanodevices and aid in the understanding of heat dissipation near nanoscale hotspots, which is crucial for future high-performance nanoelectronics.en_US
dc.description.sponsorshipDepartment of Energy (DOE)en_US
dc.description.sponsorshipNational Science Foundation (NSF)en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41586-022-04736-8en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceNatureen_US
dc.titleNanoscale imaging of phonon dynamics by electron microscopyen_US
dc.typeArticleen_US
dc.identifier.citationGadre, C.A., Yan, X., Song, Q. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalNatureen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1038/s41586-022-04736-8
dspace.date.submission2022-06-08T19:39:18Z
mit.journal.volume606en_US
mit.journal.issue7913en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record