MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport

Author(s)
Lu, Lu; Pestourie, Raphaël; Johnson, Steven G.; romano, Giuseppe
Thumbnail
DownloadPhysRevResearch.4.023210.pdf (2.351Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Date issued
2022-06-13
URI
https://hdl.handle.net/1721.1/143435
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Journal
Physical Review Research
Publisher
American Physical Society (APS)
Citation
Lu, Lu, Pestourie, Raphaël, Johnson, Steven G. and Romano, Giuseppe. 2022. "Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport." Physical Review Research, 4 (2).
Version: Final published version
ISSN
2643-1564
Keywords
General Physics and Astronomy

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.