MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bootstrapping EM via power EM and convergence in the naive bayes model

Author(s)
Daskalakis, C; Tzamos, C; Zampetakis, M
Thumbnail
DownloadPublished version (714.5Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Copyright 2018 by the author(s). We study the convergence properties of the Expectation-Maximization algorithm in the Naive Bayes model. We show that EM can get stuck in regions of slow convergence, even when the features are binary and i.i.d. conditioning on the class label, and even under random (i.e. non worst-case) initialization. In turn, we show that EM can be bootstrapped in a pre-training step that computes a good initialization. From this initialization we show theoretically and experimentally that EM converges exponentially fast to the true model parameters. Our bootstrapping method amounts to running the EM algorithm on appropriately centered iterates of small magnitude, which as we show corresponds to effectively performing power iteration on the covariance matrix of the mixture model, although power iteration is performed under the hood by EM itself. As such, we call our bootstrapping approach “power EM.” Specifically for the case of two binary features, we show global exponentially fast convergence of EM, even without bootstrapping. Finally, as the Naive Bayes model is quite expressive, we show as corollaries of our convergence results that the EM algorithm globally converges to the true model parameters for mixtures of two Gaussians, recovering recent results of [XHM16, DTZ17].
Date issued
2018-01-01
URI
https://hdl.handle.net/1721.1/143462
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
International Conference on Artificial Intelligence and Statistics, AISTATS 2018
Citation
Daskalakis, C, Tzamos, C and Zampetakis, M. 2018. "Bootstrapping EM via power EM and convergence in the naive bayes model." International Conference on Artificial Intelligence and Statistics, AISTATS 2018.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.