Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/143465.2

Show simple item record

dc.contributor.authorDagan, Yuval
dc.contributor.authorDaskalakis, Constantinos
dc.contributor.authorDikkala, Nishanth
dc.contributor.authorKandiros, Anthimos Vardis
dc.date.accessioned2022-06-17T16:15:43Z
dc.date.available2022-06-17T16:15:43Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143465
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionof10.1145/3406325.3451074en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning Ising models from one or multiple samplesen_US
dc.typeArticleen_US
dc.identifier.citationDagan, Yuval, Daskalakis, Constantinos, Dikkala, Nishanth and Kandiros, Anthimos Vardis. 2021. "Learning Ising models from one or multiple samples." Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
dc.relation.journalProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-06-17T16:11:09Z
dspace.orderedauthorsDagan, Y; Daskalakis, C; Dikkala, N; Kandiros, AVen_US
dspace.date.submission2022-06-17T16:11:11Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version