MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phase transformation and incompatibility at grain boundaries in zirconia-based shape memory ceramics: a micromechanics-based simulation study

Author(s)
Wang, Zhiyi; Lai, Alan; Schuh, Christopher A.; Radovitzky, Raúl
Thumbnail
Download10853_2022_Article_7324.pdf (2.285Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Zirconia-based shape memory ceramics (SMCs) exhibit anisotropic mechanical response when undergoing elastic deformations as well as during austenite–martensite phase transformation. This behavior results in different types of strain incompatibility at grain boundaries, which we study here using a micromechanical model. A single-crystal model is implemented to provide a full mechanistic three-dimensional description of the anisotropic elastic as well as martensitic transformation stress–strain response, including non-Schmid behavior caused by the significant volume change during martensitic transformation. This model was calibrated to and validated against compression tests of single-crystal zirconia micro-pillars conducted previously, and then used to model bi-crystals. Upon the introduction of a grain boundary, the simulation provides detailed information on the nucleation and evolution of martensite variants and stress distribution at grain boundaries. We identify bi-crystal configurations which result in very large stress concentrations at very low deformations due to elastic incompatibility, as well as others where the elastic incompatibility is relatively low and stress concentrations only occur at large transformation strains. We also show how this approach can be used to explore the misorientation space for quantifying the level of elastic and transformation incompatibility at SMCs grain boundaries. Graphical abstract Micromechanics models provide insights on grain boundary elastic and phase transformation strain incompatibility in shape memory zirconia
Date issued
2022-06-16
URI
https://hdl.handle.net/1721.1/143481
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Publisher
Springer US
Citation
Wang, Zhiyi, Lai, Alan, Schuh, Christopher A. and Radovitzky, Raúl. 2022. "Phase transformation and incompatibility at grain boundaries in zirconia-based shape memory ceramics: a micromechanics-based simulation study."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.