MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fundamental Thermal Noise Limits for Optical Microcavities

Author(s)
Panuski, Christopher; Englund, Dirk; Hamerly, Ryan
Thumbnail
DownloadPublished version (5.511Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020 authors. Published by the American Physical Society. We present a joint theoretical and experimental analysis of thermorefractive noise in high-quality-factor (Q), small-mode-volume (V) optical microcavities. Analogous to well-studied stability limits imposed by Brownian motion in macroscopic Fabry-Perot resonators, we show that microcavity thermorefractive noise gives rise to a mode-volume-dependent maximum effective quality factor. State-of-The-Art fabricated microcavities are found to be within one order of magnitude of this bound. By measuring the first thermodynamically limited frequency noise spectra of wavelength-scale high-Q/V silicon photonic crystal cavities, we confirm the assumptions of our theory, demonstrate a broadband sub-μK/Hz temperature sensitivity, and unveil a new technique for discerning subwavelength changes in microcavity mode volumes. To illustrate the immediate implications of these results, we show that thermorefractive noise limits the optimal performance of recently proposed room-Temperature, all-optical qubits using cavity-enhanced bulk material nonlinearities. Looking forward, we propose and analyze coherent thermo-optic noise cancellation as one potential avenue toward violating these bounds, thereby enabling continued development in quantum optical measurement, precision sensing, and low-noise integrated photonics.
Date issued
2020
URI
https://hdl.handle.net/1721.1/143530
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review X
Publisher
American Physical Society (APS)
Citation
Panuski, Christopher, Englund, Dirk and Hamerly, Ryan. 2020. "Fundamental Thermal Noise Limits for Optical Microcavities." Physical Review X, 10 (4).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.