Show simple item record

dc.contributor.authorRivera, Pasqual
dc.contributor.authorHe, Minhao
dc.contributor.authorKim, Bumho
dc.contributor.authorLiu, Song
dc.contributor.authorRubio-Verdú, Carmen
dc.contributor.authorMoon, Hyowon
dc.contributor.authorMennel, Lukas
dc.contributor.authorRhodes, Daniel A
dc.contributor.authorYu, Hongyi
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorYan, Jiaqiang
dc.contributor.authorMandrus, David G
dc.contributor.authorDery, Hanan
dc.contributor.authorPasupathy, Abhay
dc.contributor.authorEnglund, Dirk
dc.contributor.authorHone, James
dc.contributor.authorYao, Wang
dc.contributor.authorXu, Xiaodong
dc.date.accessioned2022-06-22T16:32:18Z
dc.date.available2022-06-22T16:32:18Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143535
dc.description.abstract© 2021, The Author(s). The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emission lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (>6 µs) and polarization lifetimes (>100 ns). Resonant excitation of the free inter- and intravalley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellitesʼ photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-21158-8en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleIntrinsic donor-bound excitons in ultraclean monolayer semiconductorsen_US
dc.typeArticleen_US
dc.identifier.citationRivera, Pasqual, He, Minhao, Kim, Bumho, Liu, Song, Rubio-Verdú, Carmen et al. 2021. "Intrinsic donor-bound excitons in ultraclean monolayer semiconductors." Nature Communications, 12 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-06-22T16:27:18Z
dspace.orderedauthorsRivera, P; He, M; Kim, B; Liu, S; Rubio-Verdú, C; Moon, H; Mennel, L; Rhodes, DA; Yu, H; Taniguchi, T; Watanabe, K; Yan, J; Mandrus, DG; Dery, H; Pasupathy, A; Englund, D; Hone, J; Yao, W; Xu, Xen_US
dspace.date.submission2022-06-22T16:27:22Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record