MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Age-related degradation of tectorial membrane dynamics with loss of CEACAM16

Author(s)
Mansour, Amer; Sellon, Jonathan B; Filizzola, Daniel; Ghaffari, Roozbeh; Cheatham, Mary Ann; Freeman, Dennis M; ... Show more Show less
Thumbnail
DownloadPublished version (953.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Studies of genetic disorders of sensorineural hearing loss have been instrumental in delineating mechanisms that underlie the remarkable sensitivity and selectivity that are hallmarks of mammalian hearing. For example, genetic modifications of TECTA and TECTB, which are principal proteins that comprise the tectorial membrane (TM), have been shown to alter auditory thresholds and frequency tuning in ways that can be understood in terms of changes in the mechanical properties of the TM. Here, we investigate effects of genetic modification targeting CEACAM16, a third important TM protein. Loss of CEACAM16 has been recently shown to lead to progressive reductions in sensitivity. Whereas age-related hearing losses have previously been linked to changes in sensory receptor cells, the role of the TM in progressive hearing loss is largely unknown. Here, we show that TM stiffness and viscosity are significantly reduced in adult mice that lack functional CEACAM16 relative to age-matched wild-type controls. By contrast, these same mechanical properties of TMs from juvenile mice that lack functional CEACAM16 are more similar to those of wild-type mice. Thus, changes in hearing phenotype align with changes in TM material properties and can be understood in terms of the same TM wave properties that were previously used to characterize modifications of TECTA and TECTB. These results demonstrate that CEACAM16 is essential for maintaining TM mechanical and wave properties, which in turn are necessary for sustaining the remarkable sensitivity and selectivity of mammalian hearing with increasing age.
Date issued
2021
URI
https://hdl.handle.net/1721.1/143540
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Biophysical Journal
Publisher
Elsevier BV
Citation
Mansour, Amer, Sellon, Jonathan B, Filizzola, Daniel, Ghaffari, Roozbeh, Cheatham, Mary Ann et al. 2021. "Age-related degradation of tectorial membrane dynamics with loss of CEACAM16." Biophysical Journal, 120 (21).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.