MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of Renewable Energy Policies through Decision Trees

Author(s)
Ortiz, Dania; Migueis, Vera; Leal, Vitor; Knox-Hayes, Janelle; Chun, Jungwoo
Thumbnail
Downloadsustainability-14-07720-v3.pdf (2.406Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This paper presents an alternative way of making predictions on the effectiveness and efficacy of Renewable Energy (RE) policies using Decision Trees (DT). As a data-driven process for decision-making, the analysis uses the Renewable Energy (RE) target achievement, predicting whether or not a RE target will likely be achieved (efficacy) and to what degree (effectiveness), depending on the different criteria, including geographical context, characterizing concerns, and policy characteristics. The results suggest different criteria that could help policymakers in designing policies with a higher propensity to achieve the desired goal. Using this tool, the policy decision-makers can better test/predict whether the target will be achieved and to what degree. The novelty in the present paper is the application of Machine Learning methods (through the Decision Trees) for energy policy analysis. Machine learning methodologies present an alternative way to pilot RE policies before spending lots of time, money, and other resources. We also find that using Machine Learning techniques underscores the importance of data availability. A general summary for policymakers has been included.
Date issued
2022-06-24
URI
https://hdl.handle.net/1721.1/143639
Department
MIT-Portugal Program; Massachusetts Institute of Technology. Department of Urban Studies and Planning
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Sustainability 14 (13): 7720 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.