MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic drivers of m6A methylation in human brain, lung, heart and muscle

Author(s)
Xiong, Xushen; Hou, Lei; Park, Yongjin P; Molinie, Benoit; Ardlie, Kristin G; Aguet, François; Gregory, Richard I; Kellis, Manolis; ... Show more Show less
Thumbnail
DownloadAccepted version (5.693Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The most prevalent post-transcriptional mRNA modification, N6-methyladenosine (m6A), plays diverse RNA-regulatory roles, but its genetic control in human tissues remains uncharted. Here we report 129 transcriptome-wide m6A profiles, covering 91 individuals and 4 tissues (brain, lung, muscle and heart) from GTEx/eGTEx. We integrate these with interindividual genetic and expression variation, revealing 8,843 tissue-specific and 469 tissue-shared m6A quantitative trait loci (QTLs), which are modestly enriched in, but mostly orthogonal to, expression QTLs. We integrate m6A QTLs with disease genetics, identifying 184 GWAS-colocalized m6A QTL, including brain m6A QTLs underlying neuroticism, depression, schizophrenia and anxiety; lung m6A QTLs underlying expiratory flow and asthma; and muscle/heart m6A QTLs underlying coronary artery disease. Last, we predict novel m6A regulators that show preferential binding in m6A QTLs, protein interactions with known m6A regulators and expression correlation with the m6A levels of their targets. Our results provide important insights and resources for understanding both cis and trans regulation of epitranscriptomic modifications, their interindividual variation and their roles in human disease.
Date issued
2021
URI
https://hdl.handle.net/1721.1/143712
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Nature Genetics
Publisher
Springer Science and Business Media LLC
Citation
Xiong, Xushen, Hou, Lei, Park, Yongjin P, Molinie, Benoit, Ardlie, Kristin G et al. 2021. "Genetic drivers of m6A methylation in human brain, lung, heart and muscle." Nature Genetics, 53 (8).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.