Show simple item record

dc.contributor.authorHe, Liang
dc.contributor.authorDavila-Velderrain, Jose
dc.contributor.authorSumida, Tomokazu S
dc.contributor.authorHafler, David A
dc.contributor.authorKellis, Manolis
dc.contributor.authorKulminski, Alexander M
dc.date.accessioned2022-07-13T17:06:57Z
dc.date.available2022-07-13T17:06:57Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143719
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The increasing availability of single-cell data revolutionizes the understanding of biological mechanisms at cellular resolution. For differential expression analysis in multi-subject single-cell data, negative binomial mixed models account for both subject-level and cell-level overdispersions, but are computationally demanding. Here, we propose an efficient NEgative Binomial mixed model Using a Large-sample Approximation (NEBULA). The speed gain is achieved by analytically solving high-dimensional integrals instead of using the Laplace approximation. We demonstrate that NEBULA is orders of magnitude faster than existing tools and controls false-positive errors in marker gene identification and co-expression analysis. Using NEBULA in Alzheimer’s disease cohort data sets, we found that the cell-level expression of <jats:italic>APOE</jats:italic> correlated with that of other genetic risk factors (including <jats:italic>CLU, CST3, TREM2</jats:italic>, C1q, and <jats:italic>ITM2B</jats:italic>) in a cell-type-specific pattern and an isoform-dependent manner in microglia. NEBULA opens up a new avenue for the broad application of mixed models to large-scale multi-subject single-cell data.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S42003-021-02146-6en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleNEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell dataen_US
dc.typeArticleen_US
dc.identifier.citationHe, Liang, Davila-Velderrain, Jose, Sumida, Tomokazu S, Hafler, David A, Kellis, Manolis et al. 2021. "NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data." Communications Biology, 4 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalCommunications Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-13T16:49:30Z
dspace.orderedauthorsHe, L; Davila-Velderrain, J; Sumida, TS; Hafler, DA; Kellis, M; Kulminski, AMen_US
dspace.date.submission2022-07-13T16:49:32Z
mit.journal.volume4en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record