Show simple item record

dc.contributor.authorGarcia, Francisco J
dc.contributor.authorSun, Na
dc.contributor.authorLee, Hyeseung
dc.contributor.authorGodlewski, Brianna
dc.contributor.authorMathys, Hansruedi
dc.contributor.authorGalani, Kyriaki
dc.contributor.authorZhou, Blake
dc.contributor.authorJiang, Xueqiao
dc.contributor.authorNg, Ayesha P
dc.contributor.authorMantero, Julio
dc.contributor.authorTsai, Li-Huei
dc.contributor.authorBennett, David A
dc.contributor.authorSahin, Mustafa
dc.contributor.authorKellis, Manolis
dc.contributor.authorHeiman, Myriam
dc.date.accessioned2022-07-13T17:44:29Z
dc.date.available2022-07-13T17:44:29Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/143722
dc.description.abstractDespite the importance of the cerebrovasculature in maintaining normal brain physiology and in understanding neurodegeneration and drug delivery to the central nervous system1, human cerebrovascular cells remain poorly characterized owing to their sparsity and dispersion. Here we perform single-cell characterization of the human cerebrovasculature using both ex vivo fresh tissue experimental enrichment and post mortem in silico sorting of human cortical tissue samples. We capture 16,681 cerebrovascular nuclei across 11 subtypes, including endothelial cells, mural cells and three distinct subtypes of perivascular fibroblast along the vasculature. We uncover human-specific expression patterns along the arteriovenous axis and determine previously uncharacterized cell-type-specific markers. We use these human-specific signatures to study changes in 3,945 cerebrovascular cells from patients with Huntington's disease, which reveal activation of innate immune signalling in vascular and glial cell types and a concomitant reduction in the levels of proteins critical for maintenance of blood-brain barrier integrity. Finally, our study provides a comprehensive molecular atlas of the human cerebrovasculature to guide future biological and therapeutic studies.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41586-022-04521-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcebioRxiven_US
dc.titleSingle-cell dissection of the human brain vasculatureen_US
dc.typeArticleen_US
dc.identifier.citationGarcia, Francisco J, Sun, Na, Lee, Hyeseung, Godlewski, Brianna, Mathys, Hansruedi et al. 2022. "Single-cell dissection of the human brain vasculature." Nature, 603 (7903).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.contributor.departmentPicower Institute for Learning and Memory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalNatureen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-13T17:16:02Z
dspace.orderedauthorsGarcia, FJ; Sun, N; Lee, H; Godlewski, B; Mathys, H; Galani, K; Zhou, B; Jiang, X; Ng, AP; Mantero, J; Tsai, L-H; Bennett, DA; Sahin, M; Kellis, M; Heiman, Men_US
dspace.date.submission2022-07-13T17:16:04Z
mit.journal.volume603en_US
mit.journal.issue7903en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record