Show simple item record

dc.contributor.authorKepner, Jeremy
dc.contributor.authorKipf, Andreas
dc.contributor.authorEngwirda, Darren
dc.contributor.authorVembar, Navin
dc.contributor.authorJones, Michael
dc.contributor.authorMilechin, Lauren
dc.contributor.authorGadepally, Vijay
dc.contributor.authorHill, Chris
dc.contributor.authorKraska, Tim
dc.contributor.authorArcand, William
dc.contributor.authorBestor, David
dc.contributor.authorBergeron, William
dc.contributor.authorByun, Chansup
dc.contributor.authorHubbell, Matthew
dc.contributor.authorHoule, Michael
dc.contributor.authorKirby, Andrew
dc.contributor.authorKlein, Anna
dc.contributor.authorMullen, Julie
dc.contributor.authorProut, Andrew
dc.contributor.authorReuther, Albert
dc.contributor.authorRosa, Antonio
dc.contributor.authorSamsi, Sid
dc.contributor.authorYee, Charles
dc.contributor.authorMichaleas, Peter
dc.date.accessioned2022-07-14T13:50:50Z
dc.date.available2022-07-14T13:50:50Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/143729
dc.description.abstract© 2020 IEEE. Pandemic measures such as social distancing and contact tracing can be enhanced by rapidly integrating dynamic location data and demographic data. Projecting billions of longitude and latitude locations onto hundreds of thousands of highly irregular demographic census block polygons is computationally challenging in both research and deployment contexts. This paper describes two approaches labeled 'simple' and 'fast'. The simple approach can be implemented in any scripting language (Matlab/Octave, Python, Julia, R) and is easily integrated and customized to a variety of research goals. This simple approach uses a novel combination of hierarchy, sparse bounding boxes, polygon crossing-number, vectorization, and parallel processing to achieve 100,000,000+ projections per second on 100 servers. The simple approach is compact, does not increase data storage requirements, and is applicable to any country or region. The fast approach exploits the thread, vector, and memory optimizations that are possible using a low-level language (C++) and achieves similar performance on a single server. This paper details these approaches with the goal of enabling the broader community to quickly integrate location and demographic data.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/HPEC43674.2020.9286157en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleFast Mapping onto Census Blocksen_US
dc.typeArticleen_US
dc.identifier.citationKepner, Jeremy, Kipf, Andreas, Engwirda, Darren, Vembar, Navin, Jones, Michael et al. 2020. "Fast Mapping onto Census Blocks." 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020.
dc.contributor.departmentLincoln Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMIT-IBM Watson AI Lab
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.relation.journal2020 IEEE High Performance Extreme Computing Conference, HPEC 2020en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-14T13:46:04Z
dspace.orderedauthorsKepner, J; Kipf, A; Engwirda, D; Vembar, N; Jones, M; Milechin, L; Gadepally, V; Hill, C; Kraska, T; Arcand, W; Bestor, D; Bergeron, W; Byun, C; Hubbell, M; Houle, M; Kirby, A; Klein, A; Mullen, J; Prout, A; Reuther, A; Rosa, A; Samsi, S; Yee, C; Michaleas, Pen_US
dspace.date.submission2022-07-14T13:46:07Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record