Show simple item record

dc.contributor.authorShang, Zeyuan
dc.contributor.authorZgraggen, Emanuel
dc.contributor.authorBuratti, Benedetto
dc.contributor.authorEichmann, Philipp
dc.contributor.authorKarimeddiny, Navid
dc.contributor.authorMeyer, Charlie
dc.contributor.authorRunnels, Wesley
dc.contributor.authorKraska, Tim
dc.date.accessioned2022-07-14T13:53:00Z
dc.date.available2022-07-14T13:53:00Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143730
dc.description.abstract<jats:p>Recently, a new horizon in data analytics, prescriptive analytics, is becoming more and more important to make data-driven decisions. As opposed to the progress of democratizing data acquisition and access, making data-driven decisions remains a significant challenge for people without technical expertise. In this regard, existing tools for data analytics which were designed decades ago still present a high bar for domain experts, and removing this bar requires a fundamental rethinking of both interface and backend.</jats:p> <jats:p> At Einblick, an MIT/Brown spin-off based on the Northstar project, we have been building the next generation analytics tool in the last few years. To overcome the shortcomings of existing processing engines, we propose <jats:italic>Davos</jats:italic> , Einblick's novel backend. <jats:italic>Davos</jats:italic> combines aspects of progressive computation, approximate query processing and sampling, with a specific focus on supporting user-defined operations. Moreover, <jats:italic>Davos</jats:italic> optimizes multi-tenant scenarios to promote collaboration. Both empirical evaluation and user study verify that <jats:italic>Davos</jats:italic> can greatly empower data analytics for new needs. </jats:p>en_US
dc.language.isoen
dc.publisherVLDB Endowmenten_US
dc.relation.isversionof10.14778/3476311.3476370en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceVLDB Endowmenten_US
dc.titleDavos: a system for interactive data-driven decision makingen_US
dc.typeArticleen_US
dc.identifier.citationShang, Zeyuan, Zgraggen, Emanuel, Buratti, Benedetto, Eichmann, Philipp, Karimeddiny, Navid et al. 2021. "Davos: a system for interactive data-driven decision making." Proceedings of the VLDB Endowment, 14 (12).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalProceedings of the VLDB Endowmenten_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-14T13:50:31Z
dspace.orderedauthorsShang, Z; Zgraggen, E; Buratti, B; Eichmann, P; Karimeddiny, N; Meyer, C; Runnels, W; Kraska, Ten_US
dspace.date.submission2022-07-14T13:50:33Z
mit.journal.volume14en_US
mit.journal.issue12en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record