Show simple item record

dc.contributor.authorMao, Jiayuan
dc.contributor.authorLuo, Zhezheng
dc.contributor.authorGan, Chuang
dc.contributor.authorTenenbaum, Joshua B
dc.contributor.authorWu, Jiajun
dc.contributor.authorKaelbling, Leslie Pack
dc.contributor.authorUllman, Tomer D
dc.date.accessioned2022-07-15T17:22:16Z
dc.date.available2022-07-15T17:22:16Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143777
dc.description.abstract<jats:p>We present Temporal and Object Quantification Networks (TOQ-Nets), a new class of neuro-symbolic networks with a structural bias that enables them to learn to recognize complex relational-temporal events. This is done by including reasoning layers that implement finite-domain quantification over objects and time. The structure allows them to generalize directly to input instances with varying numbers of objects in temporal sequences of varying lengths. We evaluate TOQ-Nets on input domains that require recognizing event-types in terms of complex temporal relational patterns. We demonstrate that TOQ-Nets can generalize from small amounts of data to scenarios containing more objects than were present during training and to temporal warpings of input sequences.</jats:p>en_US
dc.language.isoen
dc.publisherInternational Joint Conferences on Artificial Intelligenceen_US
dc.relation.isversionof10.24963/IJCAI.2021/386en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleTemporal and Object Quantification Networksen_US
dc.typeArticleen_US
dc.identifier.citationMao, Jiayuan, Luo, Zhezheng, Gan, Chuang, Tenenbaum, Joshua B, Wu, Jiajun et al. 2021. "Temporal and Object Quantification Networks." Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMIT-IBM Watson AI Lab
dc.relation.journalProceedings of the Thirtieth International Joint Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-15T17:13:47Z
dspace.orderedauthorsMao, J; Luo, Z; Gan, C; Tenenbaum, JB; Wu, J; Kaelbling, LP; Ullman, TDen_US
dspace.date.submission2022-07-15T17:13:49Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record