Show simple item record

dc.contributor.authorBatzner, Simon
dc.contributor.authorMusaelian, Albert
dc.contributor.authorSun, Lixin
dc.contributor.authorGeiger, Mario
dc.contributor.authorMailoa, Jonathan P
dc.contributor.authorKornbluth, Mordechai
dc.contributor.authorMolinari, Nicola
dc.contributor.authorSmidt, Tess E
dc.contributor.authorKozinsky, Boris
dc.date.accessioned2022-07-15T17:57:23Z
dc.date.available2022-07-15T17:57:23Z
dc.date.issued2022-12
dc.identifier.urihttps://hdl.handle.net/1721.1/143778
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-022-29939-5en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleE(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentialsen_US
dc.typeArticleen_US
dc.identifier.citationBatzner, Simon, Musaelian, Albert, Sun, Lixin, Geiger, Mario, Mailoa, Jonathan P et al. 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-15T17:21:27Z
dspace.orderedauthorsBatzner, S; Musaelian, A; Sun, L; Geiger, M; Mailoa, JP; Kornbluth, M; Molinari, N; Smidt, TE; Kozinsky, Ben_US
dspace.date.submission2022-07-15T17:21:29Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record