MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum transport and localization in 1d and 2d tight-binding lattices

Author(s)
Karamlou, Amir H; Braumüller, Jochen; Yanay, Yariv; Di Paolo, Agustin; Harrington, Patrick M; Kannan, Bharath; Kim, David; Kjaergaard, Morten; Melville, Alexander; Muschinske, Sarah; Niedzielski, Bethany M; Vepsäläinen, Antti; Winik, Roni; Yoder, Jonilyn L; Schwartz, Mollie; Tahan, Charles; Orlando, Terry P; Gustavsson, Simon; Oliver, William D; ... Show more Show less
Thumbnail
DownloadPublished version (1.976Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a model utilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3 × 3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.</jats:p>
Date issued
2022-12
URI
https://hdl.handle.net/1721.1/143813
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Lincoln Laboratory; Massachusetts Institute of Technology. Department of Physics
Journal
npj Quantum Information
Publisher
Springer Science and Business Media LLC
Citation
Karamlou, Amir H, Braumüller, Jochen, Yanay, Yariv, Di Paolo, Agustin, Harrington, Patrick M et al. 2022. "Quantum transport and localization in 1d and 2d tight-binding lattices." npj Quantum Information, 8 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.