MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D integration and measurement of a semiconductor double quantum dot with a high-impedance TiN resonator

Author(s)
Holman, Nathan; Rosenberg, D; Yost, D; Yoder, JL; Das, R; Oliver, William D; McDermott, R; Eriksson, MA; ... Show more Show less
Thumbnail
DownloadPublished version (2.315Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>One major challenge to scaling quantum dot qubits is the dense wiring requirements, making it difficult to envision fabricating large 2D arrays of nearest-neighbor-coupled qubits necessary for error correction. We describe a method to ameliorate this issue by spacing out the qubits using superconducting resonators facilitated by 3D integration. To prove the viability of this approach, we use integration to couple an off-chip high-impedance TiN resonator to a double quantum dot in a Si/SiGe heterostructure. Using the resonator as a dispersive gate sensor, we tune the device down to the single electron regime with an SNR = 5.36. Characterizing the individual systems shows 3D integration can be done while maintaining low-charge noise for the quantum dots and high-quality factors for the superconducting resonator (single photon <jats:italic>Q</jats:italic><jats:sub>L</jats:sub> = 2.14 × 10<jats:sup>4</jats:sup> with <jats:italic>Q</jats:italic><jats:sub>i</jats:sub> ≈ 3 × 10<jats:sup>5</jats:sup>), necessary for readout and high-fidelity two-qubit gates.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/143821
Department
Lincoln Laboratory; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
npj Quantum Information
Publisher
Springer Science and Business Media LLC
Citation
Holman, Nathan, Rosenberg, D, Yost, D, Yoder, JL, Das, R et al. 2021. "3D integration and measurement of a semiconductor double quantum dot with a high-impedance TiN resonator." npj Quantum Information, 7 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.