Show simple item record

dc.contributor.authorZogaj, Fatjon
dc.contributor.authorCambronero, José Pablo
dc.contributor.authorRinard, Martin C
dc.contributor.authorCito, Jürgen
dc.date.accessioned2022-07-19T14:34:55Z
dc.date.available2022-07-19T14:34:55Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143854
dc.description.abstract<jats:p>Automated machine learning (AutoML) promises to democratize machine learning by automatically generating machine learning pipelines with little to no user intervention. Typically, a search procedure is used to repeatedly generate and validate candidate pipelines, maximizing a predictive performance metric, subject to a limited execution time budget. While this approach to generating candidates works well for small tabular datasets, the same procedure does not directly scale to larger tabular datasets with 100,000s of observations, often producing fewer candidate pipelines and yielding lower performance, given the same execution time budget. We carry out an extensive empirical evaluation of the impact that downsampling - reducing the number of rows in the input tabular dataset - has on the pipelines produced by a genetic-programming-based AutoML search for classification tasks.</jats:p>en_US
dc.language.isoen
dc.publisherVLDB Endowmenten_US
dc.relation.isversionof10.14778/3476249.3476262en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceVLDB Endowmenten_US
dc.titleDoing more with less: characterizing dataset downsampling for AutoMLen_US
dc.typeArticleen_US
dc.identifier.citationZogaj, Fatjon, Cambronero, José Pablo, Rinard, Martin C and Cito, Jürgen. 2021. "Doing more with less: characterizing dataset downsampling for AutoML." Proceedings of the VLDB Endowment, 14 (11).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalProceedings of the VLDB Endowmenten_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-19T14:17:14Z
dspace.orderedauthorsZogaj, F; Cambronero, JP; Rinard, MC; Cito, Jen_US
dspace.date.submission2022-07-19T14:17:15Z
mit.journal.volume14en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record