MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative Collaborative Filtering for Sparse Matrix Estimation

Author(s)
Borgs, Christian; Chayes, Jennifer T; Shah, Devavrat; Yu, Christina Lee
Thumbnail
DownloadAccepted version (598.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> Matrix estimation or completion has served as a canonical mathematical model for recommendation systems. More recently, it has emerged as a fundamental building block for data analysis as a first step to denoise the observations and predict missing values. Since the dawn of e-commerce, similarity-based collaborative filtering has been used as a heuristic for matrix etimation. At its core, it encodes typical human behavior: you ask your friends to recommend what you may like or dislike. Algorithmically, friends are similar “rows” or “columns” of the underlying matrix. The traditional heuristic for computing similarities between rows has costly requirements on the density of observed entries. In “Iterative Collaborative Filtering for Sparse Matrix Estimation” by Christian Borgs, Jennifer T. Chayes, Devavrat Shah, and Christina Lee Yu, the authors introduce an algorithm that computes similarities in sparse datasets by comparing expanded local neighborhoods in the associated data graph: in effect, you ask friends of your friends to recommend what you may like or dislike. This work provides bounds on the max entry-wise error of their estimate for low rank and approximately low rank matrices, which is stronger than the aggregate mean squared error bounds found in classical works. The algorithm is also interpretable, scalable, and amenable to distributed implementation. </jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/143872
Department
Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Statistics and Data Science Center (Massachusetts Institute of Technology)
Journal
Operations Research
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Borgs, Christian, Chayes, Jennifer T, Shah, Devavrat and Yu, Christina Lee. 2021. "Iterative Collaborative Filtering for Sparse Matrix Estimation." Operations Research.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.