MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Verifiably safe exploration for end-to-end reinforcement learning

Author(s)
Hunt, Nathan; Fulton, Nathan; Magliacane, Sara; Hoang, Trong Nghia; Das, Subhro; Solar-Lezama, Armando; ... Show more Show less
Thumbnail
DownloadPublished version (969.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Date issued
2021
URI
https://hdl.handle.net/1721.1/143887
Department
MIT-IBM Watson AI Lab; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control
Publisher
Association for Computing Machinery (ACM)
Citation
Hunt, Nathan, Fulton, Nathan, Magliacane, Sara, Hoang, Trong Nghia, Das, Subhro et al. 2021. "Verifiably safe exploration for end-to-end reinforcement learning." Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.