Show simple item record

dc.contributor.authorYang, Tien-Ju
dc.contributor.authorLiao, Yi-Lun
dc.contributor.authorSze, Vivienne
dc.date.accessioned2022-07-20T18:14:02Z
dc.date.available2022-07-20T18:14:02Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143902
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/CVPR46437.2021.00243en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimizationen_US
dc.typeArticleen_US
dc.identifier.citationYang, Tien-Ju, Liao, Yi-Lun and Sze, Vivienne. 2021. "NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization." 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.relation.journal2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-20T17:32:29Z
dspace.orderedauthorsYang, T-J; Liao, Y-L; Sze, Ven_US
dspace.date.submission2022-07-20T17:32:31Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record