dc.contributor.author | Yang, Tien-Ju | |
dc.contributor.author | Liao, Yi-Lun | |
dc.contributor.author | Sze, Vivienne | |
dc.date.accessioned | 2022-07-20T18:14:02Z | |
dc.date.available | 2022-07-20T18:14:02Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/143902 | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | 10.1109/CVPR46437.2021.00243 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Yang, Tien-Ju, Liao, Yi-Lun and Sze, Vivienne. 2021. "NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization." 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | |
dc.relation.journal | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2022-07-20T17:32:29Z | |
dspace.orderedauthors | Yang, T-J; Liao, Y-L; Sze, V | en_US |
dspace.date.submission | 2022-07-20T17:32:31Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |