MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Private Sequential Learning

Author(s)
Tsitsiklis, John N; Xu, Kuang; Xu, Zhi
Thumbnail
DownloadAccepted version (583.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> Can we learn privately and efficiently through sequential interactions? A private learning model is formulated to study an intrinsic tradeoff between privacy and query complexity in sequential learning. The formulation involves a learner who aims to learn a scalar value by sequentially querying an external database and receiving binary responses. In the meantime, an adversary observes the learner’s queries, although not the responses, and tries to infer from them the scalar value of interest. The objective of the learner is to obtain an accurate estimate of the scalar value using only a small number of queries while simultaneously protecting his or her privacy by making the scalar value provably difficult to learn for the adversary. The main results provide tight upper and lower bounds on the learner’s query complexity as a function of desired levels of privacy and estimation accuracy. The authors also construct explicit query strategies whose complexity is optimal up to an additive constant. </jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/143909
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Operations Research
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Tsitsiklis, John N, Xu, Kuang and Xu, Zhi. 2021. "Private Sequential Learning." Operations Research, 69 (5).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.