Permutation-based causal structure learning with unknown intervention targets
Author(s)
Squires, C; Wang, Y; Uhler, C
DownloadPublished version (487.0Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We consider the problem of estimating causal DAG models from a mix of observational and interventional data, when the intervention targets are partially or completely unknown. This problem is highly relevant for example in genomics, since gene knockout technologies are known to have off-target effects. We characterize the interventional Markov equivalence class of DAGs that can be identified from interventional data with unknown intervention targets. In addition, we propose a provably consistent algorithm for learning the interventional Markov equivalence class from such data. The proposed algorithm greedily searches over the space of permutations to minimize a novel score function. The algorithm is nonparametric, which is particularly important for applications to genomics, where the relationships between variables are often non-linear and the distribution non-Gaussian. We demonstrate the performance of our algorithm on synthetic and biological datasets. Links to an implementation of our algorithm and to a reproducible code base for our experiments can be found at https://uhlerlab.github.io/causaldag/utigsp.
Date issued
2020-01-01Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Institute for Data, Systems, and SocietyJournal
Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020
Citation
Squires, C, Wang, Y and Uhler, C. 2020. "Permutation-based causal structure learning with unknown intervention targets." Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020, 124.
Version: Final published version