Show simple item record

dc.contributor.authorSturmfels, Bernd
dc.contributor.authorUhler, Caroline
dc.contributor.authorZwiernik, Piotr
dc.date.accessioned2022-07-21T13:35:46Z
dc.date.available2022-07-21T13:35:46Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143914
dc.description.abstractFelsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic char-acterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.en_US
dc.language.isoen
dc.publisherInstitute of Information Theory and Automationen_US
dc.relation.isversionof10.14736/KYB-2020-6-1154en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleBrownian motion tree models are toricen_US
dc.typeArticleen_US
dc.identifier.citationSturmfels, Bernd, Uhler, Caroline and Zwiernik, Piotr. 2021. "Brownian motion tree models are toric." Kybernetika, 56 (6).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.relation.journalKybernetikaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-21T13:24:34Z
dspace.orderedauthorsSturmfels, B; Uhler, C; Zwiernik, Pen_US
dspace.date.submission2022-07-21T13:24:36Z
mit.journal.volume56en_US
mit.journal.issue6en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record