MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization

Author(s)
Li, Daiqing; Yang, Junlin; Kreis, Karsten; Torralba, Antonio; Fidler, Sanja
Thumbnail
DownloadAccepted version (17.01Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Date issued
2021
URI
https://hdl.handle.net/1721.1/143992
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Li, Daiqing, Yang, Junlin, Kreis, Karsten, Torralba, Antonio and Fidler, Sanja. 2021. "Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization." 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.