Show simple item record

dc.contributor.authorEbert, Markus A.
dc.contributor.authorMichel, Johannes K. L.
dc.contributor.authorStewart, Iain W.
dc.contributor.authorSun, Zhiquan
dc.date.accessioned2022-07-25T12:34:07Z
dc.date.available2022-07-25T12:34:07Z
dc.date.issued2022-07-20
dc.identifier.urihttps://hdl.handle.net/1721.1/144003
dc.description.abstractAbstract The extraction of nonperturbative TMD physics is made challenging by prescriptions that shield the Landau pole, which entangle long- and short-distance contributions in momentum space. The use of different prescriptions then makes the comparison of fit results for underlying nonperturbative contributions not meaningful on their own. We propose a model-independent method to restrict momentum-space observables to the perturbative domain. This method is based on a set of integral functionals that act linearly on terms in the conventional position-space operator product expansion (OPE). Artifacts from the truncation of the integral can be systematically pushed to higher powers in ΛQCD/kT. We demonstrate that this method can be used to compute the cumulative integral of TMD PDFs over k T ≤ k T cut $$ {k}_T\le {k}_T^{\mathrm{cut}} $$ in terms of collinear PDFs, accounting for both radiative corrections and evolution effects. This yields a systematic way of correcting the naive picture where the TMD PDF integrates to a collinear PDF, and for unpolarized quark distributions we find that when renormalization scales are chosen near k T cut $$ {k}_T^{\mathrm{cut}} $$ , such corrections are a percent-level effect. We also show that, when supplemented with experimental data and improved perturbative inputs, our integral functionals will enable model-independent limits to be put on the non-perturbative OPE contributions to the Collins-Soper kernel and intrinsic TMD distributions.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP07(2022)129en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDisentangling long and short distances in momentum-space TMDsen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2022 Jul 20;2022(7):129en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-24T03:11:55Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-07-24T03:11:55Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record