MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators

Author(s)
Chen, Yufeng; Arase, Cathleen; Ren, Zhijian; Chirarattananon, Pakpong
Thumbnail
Downloadmicromachines-13-01136-v3.pdf (17.52Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Dragonflies are agile and efficient flyers that use two pairs of wings for demonstrating exquisite aerial maneuvers. Compared to two-winged insects such as bees or flies, dragonflies leverage forewing and hindwing interactions for achieving higher efficiency and net lift. Here we develop the first at-scale dragonfly-like robot and investigate the influence of flapping-wing kinematics on net lift force production. Our 317 mg robot is driven by two independent dielectric elastomer actuators that flap four wings at 350 Hz. We extract the robot flapping-wing kinematics using a high-speed camera, and further measure the robot lift forces at different operating frequencies, voltage amplitudes, and phases between the forewings and hindwings. Our robot achieves a maximum lift-to-weight ratio of 1.49, and its net lift force increases by 19% when the forewings and hindwings flap in-phase compared to out-of-phase flapping. These at-scale experiments demonstrate that forewing–hindwing interaction can significantly influence lift force production and aerodynamic efficiency of flapping-wing robots with passive wing pitch designs. Our results could further enable future experiments to achieve feedback-controlled flights.
Date issued
2022-07-18
URI
https://hdl.handle.net/1721.1/144038
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Micromachines 13 (7): 1136 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.