MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Roboat II: A Novel Autonomous Surface Vessel for Urban Environments

Author(s)
Wang, Wei; Shan, Tixiao; Leoni, Pietro; Fernandez-Gutierrez, David; Meyers, Drew; Ratti, Carlo; Rus, Daniela; ... Show more Show less
Thumbnail
DownloadSubmitted version (3.810Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 IEEE. This paper presents a novel autonomous surface vessel (ASV), called Roboat II for urban transportation. Roboat II is capable of accurate simultaneous localization and mapping (SLAM), receding horizon tracking control and estimation, and path planning. Roboat II is designed to maximize the internal space for transport, and can carry payloads several times of its own weight. Moreover, it is capable of holonomic motions to facilitate transporting, docking, and inter-connectivity between boats. The proposed SLAM system receives sensor data from a 3D LiDAR, an IMU, and a GPS, and utilizes a factor graph to tackle the multi-sensor fusion problem. To cope with the complex dynamics in the water, Roboat II employs an online nonlinear model predictive controller (NMPC), where we experimentally estimated the dynamical model of the vessel in order to achieve superior performance for tracking control. The states of Roboat II are simultaneously estimated using a nonlinear moving horizon estimation (NMHE) algorithm. Experiments demonstrate that Roboat II is able to successfully perform online mapping and localization, plan its path and robustly track the planned trajectory in the confined river, implying that this autonomous vessel holds the promise on potential applications in transporting humans and goods in many of the waterways nowadays.
Date issued
2020
URI
https://hdl.handle.net/1721.1/144042
Department
Senseable City Laboratory; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
IEEE International Conference on Intelligent Robots and Systems
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Wang, Wei, Shan, Tixiao, Leoni, Pietro, Fernandez-Gutierrez, David, Meyers, Drew et al. 2020. "Roboat II: A Novel Autonomous Surface Vessel for Urban Environments." IEEE International Conference on Intelligent Robots and Systems.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.