MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Recipe for Electrically-Driven Soft Robots via 3D Printed Handed Shearing Auxetics

Author(s)
Truby, Ryan L; Chin, Lillian; Rus, Daniela
Thumbnail
DownloadPublished version (4.028Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Electrically-mediated actuation schemes offer great promise beyond popular pneumatic and suction based ones in soft robotics. However, they often rely on bespoke materials and manufacturing approaches that constrain design flexibility and widespread adoption. Following the recent introduction of a class of architected materials called handed shearing auxetics (HSAs), we present a 3D printing method for rapidly fabricating HSAs and HSA-based soft robots that can be directly driven by servo motors. To date, HSA fabrication has been limited to the laser cutting of extruded teflon tubes. Our work expands the HSA materials palette to include flexible and elastomeric polyurethanes. Herein, we investigate the influence of material composition and geometry on printed HSAs' mechanical behavior. In addition to individual HSA performance, we evaluate printed HSAs in two soft robotic systems - four degree-of-freedom (DoF) platforms and soft grippers - to confirm that printed HSAs perform similarly to the original teflon HSA designs. Finally, we demonstrate new soft robotic capabilities with 3D printed HSAs, including fully 3D printed HSA fingers, higher force generation in multi-DoF devices, and demonstrations of soft grippers with internal HSA endoskeletons. We anticipate our methods will expedite the design and integration of novel HSAs in electrically-driven soft robots and facilitate broader adoption of HSAs in the field.
Date issued
2021
URI
https://hdl.handle.net/1721.1/144043
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
IEEE Robotics and Automation Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Truby, Ryan L, Chin, Lillian and Rus, Daniela. 2021. "A Recipe for Electrically-Driven Soft Robots via 3D Printed Handed Shearing Auxetics." IEEE Robotics and Automation Letters, 6 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.