Show simple item record

dc.contributor.authorBertsimas, Dimitris
dc.contributor.authorZhuo, Daisy
dc.contributor.authorDunn, Jack
dc.contributor.authorLevine, Jordan
dc.contributor.authorZuccarelli, Eugenio
dc.contributor.authorSmyrnakis, Nikos
dc.contributor.authorTobota, Zdzislaw
dc.contributor.authorMaruszewski, Bohdan
dc.contributor.authorFragata, Jose
dc.contributor.authorSarris, George E
dc.date.accessioned2022-07-27T16:46:56Z
dc.date.available2022-07-27T16:46:56Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/144078
dc.description.abstract<jats:sec><jats:title>Objective:</jats:title><jats:p> Risk assessment tools typically used in congenital heart surgery (CHS) assume that various possible risk factors interact in a linear and additive fashion, an assumption that may not reflect reality. Using artificial intelligence techniques, we sought to develop nonlinear models for predicting outcomes in CHS. </jats:p></jats:sec><jats:sec><jats:title>Methods:</jats:title><jats:p> We built machine learning (ML) models to predict mortality, postoperative mechanical ventilatory support time (MVST), and hospital length of stay (LOS) for patients who underwent CHS, based on data of more than 235,000 patients and 295,000 operations provided by the European Congenital Heart Surgeons Association Congenital Database. We used optimal classification trees (OCTs) methodology for its interpretability and accuracy, and compared to logistic regression and state-of-the-art ML methods (Random Forests, Gradient Boosting), reporting their area under the curve (AUC or c-statistic) for both training and testing data sets. </jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p> Optimal classification trees achieve outstanding performance across all three models (mortality AUC = 0.86, prolonged MVST AUC = 0.85, prolonged LOS AUC = 0.82), while being intuitively interpretable. The most significant predictors of mortality are procedure, age, and weight, followed by days since previous admission and any general preoperative patient risk factors. </jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p> The nonlinear ML-based models of OCTs are intuitively interpretable and provide superior predictive power. The associated risk calculator allows easy, accurate, and understandable estimation of individual patient risks, in the theoretical framework of the average performance of all centers represented in the database. This methodology has the potential to facilitate decision-making and resource optimization in CHS, enabling total quality management and precise benchmarking initiatives. </jats:p></jats:sec>en_US
dc.language.isoen
dc.publisherSAGE Publicationsen_US
dc.relation.isversionof10.1177/21501351211007106en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAdverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approachen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, Zhuo, Daisy, Dunn, Jack, Levine, Jordan, Zuccarelli, Eugenio et al. 2021. "Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approach." World Journal for Pediatric and Congenital Heart Surgery, 12 (4).
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.relation.journalWorld Journal for Pediatric and Congenital Heart Surgeryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-27T16:41:45Z
dspace.orderedauthorsBertsimas, D; Zhuo, D; Dunn, J; Levine, J; Zuccarelli, E; Smyrnakis, N; Tobota, Z; Maruszewski, B; Fragata, J; Sarris, GEen_US
dspace.date.submission2022-07-27T16:41:46Z
mit.journal.volume12en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record