Show simple item record

dc.contributor.authorWiberg, Holly
dc.contributor.authorYu, Peter
dc.contributor.authorMontanaro, Pat
dc.contributor.authorMather, Jeff
dc.contributor.authorBirz, Suzi
dc.contributor.authorSchneider, Michelle
dc.contributor.authorBertsimas, Dimitris
dc.date.accessioned2022-07-27T17:34:13Z
dc.date.available2022-07-27T17:34:13Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/144085
dc.description.abstract<jats:sec><jats:title>PURPOSE</jats:title><jats:p> Severe and febrile neutropenia present serious hazards to patients with cancer undergoing chemotherapy. We seek to develop a machine learning–based neutropenia prediction model that can be used to assess risk at the initiation of a chemotherapy cycle. </jats:p></jats:sec><jats:sec><jats:title>MATERIALS AND METHODS</jats:title><jats:p> We leverage rich electronic medical records (EMRs) data from a large health care system and apply machine learning methods to predict severe and febrile neutropenic events. We outline the data curation process and challenges posed by EMRs data. We explore a range of algorithms with an emphasis on model interpretability and ease of use in a clinical setting. </jats:p></jats:sec><jats:sec><jats:title>RESULTS</jats:title><jats:p> Our final proposed model demonstrates an out-of-sample area under the receiver operating characteristic curve of 0.865 (95% CI, 0.830 to 0.891) in the prediction of neutropenic events on the basis of only 20 clinical features. The model validates known risk factors and offers insight into potential novel clinical indicators and treatment characteristics that elevate risk. It relies on factors that are directly extractable from EMRs, provided a tool can be easily integrated into existing workflows. A cost-based analysis provides insight into optimal risk thresholds and offers a framework for tailoring algorithms to individual hospital needs. </jats:p></jats:sec><jats:sec><jats:title>CONCLUSION</jats:title><jats:p> A better understanding of neutropenic risk on an individual level enables a more informed approach to patient monitoring and treatment decisions. </jats:p></jats:sec>en_US
dc.language.isoen
dc.publisherAmerican Society of Clinical Oncology (ASCO)en_US
dc.relation.isversionof10.1200/CCI.21.00046en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titlePrediction of Neutropenic Events in Chemotherapy Patients: A Machine Learning Approachen_US
dc.typeArticleen_US
dc.identifier.citationWiberg, Holly, Yu, Peter, Montanaro, Pat, Mather, Jeff, Birz, Suzi et al. 2021. "Prediction of Neutropenic Events in Chemotherapy Patients: A Machine Learning Approach." JCO Clinical Cancer Informatics, (5).
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.relation.journalJCO Clinical Cancer Informaticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-27T17:21:47Z
dspace.orderedauthorsWiberg, H; Yu, P; Montanaro, P; Mather, J; Birz, S; Schneider, M; Bertsimas, Den_US
dspace.date.submission2022-07-27T17:21:48Z
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record