MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the degeneration of asymptotically conical Calabi–Yau metrics

Author(s)
Collins, Tristan C.; Guo, Bin; Tong, Freid
Thumbnail
Download208_2021_2229_ReferencePDF.pdf (501.0Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We study the degenerations of asymptotically conical Ricci-flat Kähler metrics as the Kähler class degenerates to a semi-positive class. We show that under appropriate assumptions, the Ricci-flat Kähler metrics converge to a incomplete smooth Ricci-flat Kähler metric away from a compact subvariety. As a consequence, we construct singular Calabi–Yau metrics with asymptotically conical behaviour at infinity on certain quasi-projective varieties and we show that the metric geometry of these singular metrics are homeomorphic to the topology of the singular variety. Finally, we will apply our results to study several classes of examples of geometric transitions between Calabi–Yau manifolds.
Date issued
2021-06-28
URI
https://hdl.handle.net/1721.1/144107
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Collins, Tristan C., Guo, Bin and Tong, Freid. 2021. "On the degeneration of asymptotically conical Calabi–Yau metrics."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.