MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing the Partition Function of the Sherrington-Kirkpatrick Model is Hard on Average

Author(s)
Gamarnik, David; Kizildag, Eren C
Thumbnail
DownloadSubmitted version (374.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 IEEE. We establish the average-case hardness of the algorithmic problem of exactly computing the partition function of the Sherrington-Kirkpatrick model of spin glasses with Gaussian couplings. In particular, we establish that unless P=#P, there does not exist a polynomial-time algorithm to exactly compute this object on average. This is done by showing that if there exists a polynomial-time algorithm exactly computing the partition function for a certain fraction of all inputs, then there is a polynomial-time algorithm exactly computing this object for all inputs, with high probability, yielding P =#P. Our results cover both finite-precision arithmetic as well as the real-valued computational models. The ingredients of our proofs include Berlekamp-Welch algorithm, a list-decoding algorithm by Sudan for reconstructing a polynomial from its noisy samples, near-uniformity of log-normal distribution modulo a large prime; and a control over total variation distance for log-normal distribution under convex perturbation. To the best of our knowledge, this is the first average-case hardness result pertaining a statistical physics model with random parameters.
Date issued
2020
URI
https://hdl.handle.net/1721.1/144132
Department
Sloan School of Management; Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE International Symposium on Information Theory - Proceedings
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Gamarnik, David and Kizildag, Eren C. 2020. "Computing the Partition Function of the Sherrington-Kirkpatrick Model is Hard on Average." IEEE International Symposium on Information Theory - Proceedings, 2020-June.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.